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ABSTRACT

T 0%

The maximum velocity of fracture in an homogeneous isotropic

elastic medium under pure shear stress and with an added compressive

i

stressfis computed by an extension of Yoffe's method. The maximum
velocity of shear fracture is Smaller than the velocity of trans-
verse waves in the medium.. It increases as Poisson's ratio increases
and decreases as the compressive stress increases. The maximum
velocity of pure shear fracture is higher than the velocity of pure
tensile fracture in the same medium. For a medium with Poisson's

ratio of 0.25 the former is 0.775 and the latter is 0.631 of the

transverse wave velocity. RVTHIR
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INTRODUCTION

The geographicél distribution of the sense oé-first motions
from earthgquakes étrongly suggests that a sudden shearing motion.
takes place at the earthquake focus. The actual mechanism at the
focus is not known, but the shearing motion could possibly be caused
by rupture o% ﬁwo types, a) by the reopening by relative motion of
two sides of a fused fault or b) by the shear fracture (particle
motion parallel to fracture surface and normal to fracture front)
of an unbroken medium. In either case the rtpture would travel

at a finite velocity. Because of uncertainties about the materials
and the nature of fusion, theoretical determination of the velocity
of reopening of fused fault is difficult. The determination of the

velocity of shear fracture of an unbroken medium is more tractable.

Press, Ben Menahem and Toks®z (1961) and Ben-Menahem and Toksbz

(1962) have computed a fault length and rupture velocity by two
different methods from an analysis of surface waves. 1In this paper
we confine ourselves to studying theoretically the stress distribu-
tion at the head of a moving shear fracture, with and without super-
imposed compression, and to see how the stress dis&igution sets
an upper limit to the velocity of shearifracture propagation. We
then obtain the. maximum velocity of shear fracture under various
conditions. L

The theoretical méximum velocity of propagation of tensile

fractures was determined by Yoffe (1951).- She found that a fracture
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loses energy by branching after attaining a velocity equal to 0.6
of the transverse wave velocity. A more general-éﬁalysis

has been given by  Bilby and Bullouch (1954), who derived the expres-

sions for the stress distribution around the head of a fracture
propagating in an elastic medium under an applied stress Pij'
Craggs (1960). has treated the problem of a growing semi-infinite

fracture in which an internal stress follows the fracture front.

McClintock and Sukhatme (1960), Barenblatt and Cherepanov (1961),

and Field and Baker (1962) have studied the problem of longitudinal

shear fracture. -

STRESS DISTRIBUTION

The propagating fracture has been treated by Yoffe (1951) and

by Bilby and Bullough (1954) as a disturbance of constant length
that moves écross an elastic medium. If attention is concentrated
on regions in the immediate vicinity of the fracture front, the
effect of the tail end of the stress distribution near the front
will e small. Referring to Figure 1, the fracture front extends
from -8 to 6« along the z axis. The fracture propagates in the

x direction with a velocity of c. The y axis is normal to the
fracture surface. The length of the ffacture is 2a. The fracture
surface is assumed to be plane and frictionless. Following the
notation of Bilby and Bullough (1954) Pij is defined as the applied

stress tensor, and p;4 as the stress around the fracture front which

J

we seek to determine, If the applied stress Pj4 is removed then




ey = O aX  o® | (1)

and fox -—a {7 wsheve 2w = x-cX

- - Py = — 1T |
Problem II p%%_ ) (3)
Problem III Pye = Poo = = 5 (4)

We are primarily interested only in Problem I (pure shear fracture)
and in Problem II (tensile fracture). By symmetry we may confine
ourselves to the half-space y) 0. The boundary conditions for y=0
in this half space are given by

Problem I Shear stress

P = -8 for —-a =x' =a ' (5)
Xy

byy = 0 for all x!
u= 0 for ‘x'l >a .

Problem II Tensile stress

P = -T for -a =x' =a
Yy

Pyy = O for all x' | | (6)

v =0 for }x'[ >a



“Yhere u and v are the displacements in the x and y directions
respectively.

Let a polar éoordinate system (r,A) be defined such that x' -a =
r cosf, y = r sin8d. Then FE- can be obtained for a small constant
r (r/a<<i) and different A's, in the neighborhood of the fracture
front. Partﬂof the solution obtained by Yoffe (1951) and Bilby and
Bullouch (1954) is given below. The shear stress at the fracture

front is given by

Problem I
-bx' - S _[-[:.Ezar CO5H V/—ij prl)l Cos CQJ./Z) (7)
Y H 2k, 25 - (Zka

Problem IXI

PX, - T. — Sin C§£_2) ] (8)
3 [2ka
where
c = fracture velocity
~l= dilatation wave velocity

v

C,= Transverse wave velocity

Y= (1- S/c? )%

B= (1 - <%y

N = —(1 +)/7+ 48/(1 + )
H=-2Y+ (1 +,'5‘)/2;3“"

0, = tanl  (Yrane)

8,= tan”t (Btans)

K = small arbitrary constant




ki= K, [1 ~(c*/ck )SiﬂzQJ
k=%, [1-("g* )sin*e )%

In the case of a shear fracture in a medium under compression,
we assume th;t the compressive stress is applied normal to the frac-
true surface. While physically it may be difficult to imagine a
purely compressive fracture, mathematically it is possible to calcu-
late the stress Pij in such a case by simply inverting the sign of
T in Problem II. Thé stresses F&j could then be interpreted as due
to the imposition of the compressive stress on a medium in which
a fracture is already propagating because of a different applied
stress. In our case, the compressive stress -T is applied to a med-
ium in which a shear stress S is already causing a shear fracture
to propagate. Tierefore, for a combination of Problems I and II
the shear stress in the neighborhood of the fracture front is, by

superposition,

Py

- SFL/. 2‘,@5(6./9) a+£5% cos (6(2) j_ 1 {sin (61/2) qm(ez/gjﬁ
Lw{ MY e )+ s Uk 2%, J

fak, - 19)

As we are primarily interested in shear fractures -T/S is always

<]1. The well known transformation relations (Durelli et. al. (1958)

are then used to obtain p.,., bge. breg in polar coordinates from

Pxx' P Yy' t>xy.




RESULTS

The independenF‘variables in the expressions .(7), (8) and
(9) are the Poisson'é ratio ¢~ (which determines the ratio c,/cl).
the relative fracture velocity c/c,, the ratio of compressive to
shear stress -T/S, and the angle e. The solutions Fﬁj for all three
expressions were computed on the Rice University computer. One
solution of Problem II served as a check by making it possible to
compare our result with that of Yoffe (1951). For purely tensile
fractures in a medium of Poisson's ratio 0.25, the maximum fracture
velocity is given by Yoffe to be 0.6c, as compared to our result
of 0'631Ci The difference is due to the -greater preciéion of our
computation. For a medium of Poisson's ratio 0.25, our values of
Cb for pure tensile and pure shear fractures also agree with those
obtained by Craggs (1960).

The variables in the expressions (7), (8), and (9)rwere varied
in the following ranges: © from 0.10 to 0.30, c/c, from 0.20 to
1.00, -T/S from 0.00 to 1.00, & from 0° to 90°. A typical set
of curves_is presented in Fig. 2 for 6=0.25 and -T7/S = 0. Fig. 3
shows the sét of curves for 6= 0.25 and -T/S = 0.6. Since we are
dealing with shear fractures it is reasonable to assume that the
fracture will propagate in the direction in which the shear stress

Fye is m?ximum.. For low values of c/c2 the maximum occurs at
e = 0°, and the fracture propagates in a straight line. With in-
crease of velocity the relative amplitude of the maximum decreases

until at a certain value of c/cz, bre,shows no variation over a

wra A A~ AE ~ammana= T o nO L FIE TN R _ov P T - . -
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no preferred direction of propagation. Therefore it is considered
that the fracture will form branches. The available energy of th
fracture formation will then be divided and the fracture will slow
down to a value lower than the critical branching velocity. This
process will be repeated for each of the branches. Thus the fracture
can never exceed the critical branching velocity ¢y. Fig. 4 shows
the variation of Prsxmﬁjlﬁ, at the critical branching velocity,
for = 0.25 and for different -T/S. Values of the critical branching
velocity, which is the maximum velocity of shear fracture, are given
in Table 1 for differentcgnd -T/S ratios. One notices that the
branching velocity increases as Poisson's ratio inéreases and s
the compressive stress decreases. For comparison the branching
velocity for purely tensile fractures if given in Table 2. It
can be seen that for the same medium.the branching velocity for a

pure shear fracture is higher than a pure tensile fracture.

DISCUSSION
Some of the assumptions used in obtaining values for the maxi-
mum velocity of shear fractures are far removed from reality. A
Lovino frncture can maintainva constant length only if the medium
neals cougacetely after the tail end of.the fracture. This is obvious-
ly physically impossible. However, the results obtained should still

be valid as we are primarily concerned with the stress in the in-

mediate vicinity of the fracture front, which is far removed Ifrom



the tail end. Secondly plane frictionless fracture surfaces do

not exist in nature;' Any shear movement along a réél fracture will
bring opposing frictional forces into play. It appears however,
that the opposing frictional forces will only affect thé# magni-
tude of S, the applied shear stress. From expression (7) it is
apparent thag‘this will not affect the stress distribution. The
maximum fracture velocity of pure shear fracture is therefore
unaffected by frictional forces. Our results appear to be confirmed

for shear fractures in the earth. In the case of the Chilean

earthquake of 1960 Press, et al (1960) have found a rupture velo-

city near the velocity of transverse waves in crustal rocks. Simi-

lar results were obtained by Ben Menahem and Toksdz (1962) in the

case of the Mongolian earthquake of 1957.
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Figure 4 Shear stress F}e distribution at the front of
shear fracture at branching velocity, for different values

of compressive shear stress ratio. The Poisson's ratio of

the medium is 0.25.
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